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We Have an Interdisciplinary Team

• Graham Thomas - ENG/MMED
- Project Management

- NDE, materials characterization

• Chris Robbins - ENG/NSED
- Program Management
- Data acquisition, hardware, signal processing software, NDE

• Grace Clark - ENG/NSED
- Image/signal processing, target/pattern recognition,

sensor data fusion, NDE

• Katherine Wade - ENG/NSED
- Signal processing software and testing
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Agenda

• Introduction

- The Damage Detection Problem

• Ultrasonic NDE (As-Built Modeling)
• Motivated by Time Domain Reflectometry for Cables

- This is work in progress

• Technical Approach - Model-Based Damage Detection

• Damage Detection Processing Results

- Ultrasonic NDE

- TDR for Cables

• Discussion



5Option:UCRL-CONF-236598
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory

“As-Built Modeling” is Used to Compare Mechanical Objects:

“As-Designed,” “As-Built,” “As Inspected After Use”
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Ultrasonic Pulse-Echo Signals (A-Scans) Are Distorted
By the Transducer and the Propagation Paths (“Ringing”)

Grace Clark
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Ultrasonic Pulses Are Bandlimited  by the Transducer 

==> The Pulses “Ring”, Reducing Spatial Resolution

y(t) = Reflected Pulse

|Y(f)|2 = 2-Sided
DFT of the 
Reflected Pulse

Front Reflection:

Flaw Reflection:

Back Reflection:
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We Define Ultrasonic A-, B-, and C-Scans Used in

Nondestructive Evaluation (NDE) Studies: Grace Clark
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We Are Testing Two-Conductor Flat Cables

With Kapton Insulation - For Dielectric Anomalies

Two-Conductor Flat Cable
With Kapton Insulation

Foil Simulating a Capacitive
Discontinuity (Damage)

Red TDR Signal => Good Cable
Black TDR Signal => Damaged Cable

Foil (Damage)

No Foil
(No Damage)

Kapton 

Kapton

Dielectric 

KaptonAdhesive

Copper foil

Copper foil

 Expected Damage Types:

-Compressions
-Punctures

- Short Circuits
- Open Circuits
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The Model-Based Damage Detection Approach:

Detect a Model Mismatch if Damage is Present

• Exploit the fact that the measurements are reasonably repeatable.

• Build a forward model of the dynamic

system (cable) for the case in which NO DAMAGE exists

• Whiteness Testing on the Innovations (Errors):
Estimate the output of the actual system using 

measurements from a dynamic test.

- If no damage exists, the model will match the measurements, 

so the “innovations” (errors) will be statistically white.

- If a damage exists, the model will not match the measurements,

so the “innovations” (errors) will not be statistically 
white.

• Weighted Sum Square Residuals (WSSR) Test:

The WSSR provides a single metric for the model mismatch
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Step #1: System Identification to Estimate the

Dynamic Model of the Undamaged Cable
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Step1 (System ID) is Done “Offline”

Step2 (Damage Testing) is Done “Online”
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Processing:

• Cutting
• Mean/Trend

Removal

• Decimation

System

Identification
(Model-

Building)

Whiteness
Test

WSSR
Test

Step1 (System ID)

Step2 (Damage Testing)

“Undamaged” Innovations

Whiteness
Test

(Optional)

WSSR

Test

+
+

-

“Damaged” Innovations

! 

s(n)

! 

x
U
(n) ! 

s(n)

! 

x
U
(n)

! 

x
D
(n)

! 

e
U

(n) = x
U

(n) " ˆ x 
U

(n)

! 

ˆ x 
U

(n)

! 

e
D

(n) = x
D

(n) " ˆ x 
U

(n)

Up-sample
(Interpolate)

Reference
Signal

“Undamaged”
Signal

Possibly
“Damaged”

Signal 
Under Test

Pre-
Processing:

• Cutting
• Mean/Trend

Removal



13Option:UCRL-CONF-236598
Grace A. Clark, Ph.D.

Lawrence Livermore National Laboratory

The Form of the Linear System Model is “ARX”

= “Auto-Regressive with Exogenous Input”

The model parameters are estimated using a least squares algorithm.

- Solve an over-determined set of linear equations

- Solve using QR factorization algorithm

- The regression matrix is formed so that only measured quantities

are used (no fill-out with zeros).
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Scalar WSSR (Weighted Sum Squared Residuals) Test
For a Scalar Measurement (p = 1)

We define the scalar WSSR test statistic at time index n: 

Note: We estimate WSSR over a finite sliding window of length W samples.
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Scalar WSSR is Calculated Using a Sliding Window

Over the Innovations Sequence
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Define the WSSR Hypothesis Test

By defining a threshold (later), the WSSR test becomes:

! 

If  "(n)
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! 
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WSSR Test
For a scalar measurement (p = 1)    (Continued)

For the null hypothesis H0, the WSSR is chi square distributed:

However, for W > 30, the WSSR is approximately normally distributed:

At the significance level       , the probability of rejecting the null

Hypothesis (detecting a jump) is:
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WSSR Hypothesis Test (Continued)

At the significance level      , we can create a confidence interval test:
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The Scalar WSSR Confidence Interval Threshold is

Parameterized by the Window Length W

Summary of the WSSR Test for Significance             :
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               In practice, we implement the WSSR test as follows:
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We Constructed a “Phantom” Part - Aluminum Block
Containing Flat-Bottom Holes
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UT1a_s_xu_xdC.pdf

System Identification: Preprocessed Signals

! 

s(n)= Reference Signal
     (Front Reflection)

! 

x
U
(n) = Unflawed Cable Output

! 

x
D
(n) = Damaged Cable Output

Damage is Very Small (Not Visible in this Plot)

! 

fs =1.0e8 Hz

Ts =1.0e " 8 sec
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UT1_Ree_RsxuC.pdf

System Identification: Correlation Tests are Satisfactory
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UT1a_WT_euC

System Identification Whiteness Test Result = White

Model:

arx(30,29,1)
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UT1a_WSSR_euC.pdf

System Identification WSSR Test Result = No Model Mismatch!
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UT1a_WSSR_edC.pdf

“Minor Damage” WSSR Result = Model Mismatch!

W = 61
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Conclusions & Future Work

Future Work:

• Receiver Operating Characteristic (ROC) Curves for the Ultrasonic data
• More repeatability studies (test the hardware)
• More controlled experiments with known damage
• More studies with various types of damage
• Compare with other approaches

• Basic algorithms were validated with real signals
- Ultrasonic NDE data

- TDR data - Receiver Operating Characteristic (ROC)
     curves and Confidence Intervals
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Contingency VG’s

Grace A. Clark
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E1_s_xu_xdC.pdf

System Identification: Preprocessed Signals
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s(n)= Reference Signal
     (Front Reflection)
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x
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x
D
(n) = Damaged Cable Output Example:

Major
Damage
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System Identification:  The Model Fit is Good
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E1_Ree_Rxy1C.pdf

System Identification: Correlation Tests are Satisfactory
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E1_WT_euC.pdf

System Identification Whiteness Test Result = White
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E1_WSSR_eu(61)C.pdf

System Identification WSSR Test Result = No Model Mismatch!
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We Acquired an Ensemble of Real Signals for Processing
The PIU was never disconnected between acquisitions               Experiment E1:  Data from 2_13_07

UNDAMAGED
     Reference Signals (Undamaged):

refa, refb, refc

MINOR DAMAGE
     Minor Damage (pin hole, knife present, no short):

minor1a, minor1b, minor1c

     Minor Damage (pin hole, knife removed, no short):
minor2a, minor2b, minor2c

     Minor Damage (pin hole, knife removed,
cable rubbed to remove short):

minor3a, minor3b, minor3c

MAJOR DAMAGE
     Major Damage (pin hole, knife removed,

conductors shorted):
major1a,  major1b,  major1c
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E1_xd_m3a_xuC.pdf

“Minor3 Damage”:  Damage Is Difficult to Distinguish Visually
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E1_ed_m3a_xuC.pdf

Minor3 Damage: The  Innovations are Small, But Correlated
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E1_WSSR_ed_m3a_(61)C.pdf

“Minor3 Damage” WSSR Result = Model Mismatch!

W = 61
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Minor3a,b,c Damage

Receiver Operating Characteristic (ROC) Curve = Perfect
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